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Abstract: Gaussian belief propagation algorithm (GaBP) is one of the most important distributed algorithms in signal processing 

and statistical learning involving Markov networks. It is known that the algorithm correctly computes marginal density functions 

from a high dimensional joint density function over a Markov network in a finite number of iterations when the underlying 

Gaussian graph is acyclic. Analysis of convergence rate is an important factor. GaBP algorithm is shown to converge faster than 

classical iterative methods like Jacobi method,successive over relaxation.It is more recently known that walk summability 

approach  extends  for  better  convergence  result.Convergence  rate  analysis  of  GaBP  for markov network using walk 

summability approach and theoretical study of convergence rate analysis using laplacian operator are considered in this work.  
 

Index Terms— Gaussian belief propagation,Markov network,Convergence rate,Walk summability,Laplacian operator 
 

I. INTRODUCTION 

 

Belief propagation algorithm is a well-celebrated distributed algorithm for Markov networks that has been widely 

utilized in many disciplines, ranging from statistical learning and artificial intelligence to distributed estimation,distributed 

optimisation, networked control and digital communications. It is designed compute the marginal probability densities of random 

variables from the joint probability density function over a large Markov network with sparse connections among individual 

random variables. The Gaussian BP algorithm (GaBP), a special version of the BP algorithm for Markov networks with Gaussian 

distributions (also known as Gaussian graphical model), has received special attention for the study of its convergence 

properties.Markov network or undirected graphical model is a set of random variables having a Markov property described by an 

undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. 

  A  Markov  network  or  MRF  is  similar  to  a Bayesian  network in  its  representation  of dependencies; the 

differences being that Bayesian networks are directed and acyclic, whereas Markov networks are undirected and may be cyclic. 

Thus, a Markov network can represent certain dependencies that a Bayesian network cannot (such as cyclic dependencies); on the 

other hand, it can't represent certain dependencies that a Bayesian network can (such as induced dependencies). The underlying 

graph of a Markov random field may be finite or infinite. 

In numerical analysis,the order of convergence and the rate of convergence of a convergent sequence are quantities that 

represent how quickly the sequence approaches its limit. In practice ,the rate and order of convergence provide useful insights 

when using iterative methods for calculating numerical approximations.Many methods exist to increase the rate of convergence of 

a given sequence,that is to transform a given sequence  into one converging faster to the same limit.The goal of the transformed 

sequence is to reduce the computational cost of calculation. 

Different methods or approaches can be used for the purpose of analysing convergence of markov network.Walk 

summability approach is the best among the existing one.This paper discusses about laplacian solvers for determing the 

convergence rate for cyclic networks. 
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II. LITERATURE REVIEW 

A novel statistical manifold algorithm for position estimation in wireless sensor networks is developed in [1]. It ables to 

find distance information among unknown and anchor nodes, in following steps:First ,a ranging model about distance information 

is established.Then a solution problem to this established model,it is then transformed into a parameter estimation of curved 

exponential family.Next a solution to this estimation problem is obtained by natural gradient method.To ensure  convergence of 

the proposed algorithm,a particle swarm optimization method is utilized to obtain initial values of the unknown nodes.PSO is a 

computational method that optimizes a problem iteratively. 

In [2],convergence rate is analysing   using Gaussian Belief Propagation Solver(GaBP).This paper describes an 

undirected graphical models corresponding to the linear systems of equations.Applying Belief Propagation in graphical model and 

updating the BP equation using   performed. In ordinary BP, convergence does not guarantee exactness of the inferred 

probabilities, unless the graph has no cycles. Its underlying Gaussian nature yields a direct connection between convergence and 

exact inference. The following two theorems establish sufficient conditions under which GaBP is guaranteed to converge to the 

exact marginal means. 

                          i.If the matrix A is  strictly diagonally dominant (i.e , |Aii | > ∑ |Aij |,j≠i ∀ i ),. 

then GaBP converges and the marginal means converge to the true means. This sufficient condition was recently relaxed 

to include a wider group of matrices. 

                        ii.If the spectral radius (i.e. , the maximum of the absolute values of the eigen values) ρ of  the matrix |In 

− A| satisfies ρ(|In− A|) < 1, then GaBP converges. 

 

Different convergence conditions for Gaussian Belief Propagation is proposed in [3].The complexity of directly 

computing the marginal PDF will be very high.So by passing messages from neighbouring nodes in factor graph ,BP provides an 

efficient way to compute the approximate marginal PDFs upon convergence.This paper deals with describing the message passing 

process of GaBP on pairwise factor graph as a set of updating function. The convergence conditions of beliefs for synchronous 

Gaussian BP,damped Gaussian BP and asynchronous Gaussian BP are derived: 

  i.In synchronous Gaussian BP, belief parameters(σi
2(t),μi(t)) converge to the same point for all choices of va(0)∈ 𝒜 

and βa(0)∈ ℝ
|ε|

 if and only if S1 ≠ ∅, ρ(G∗) < 1 and pii+ ∑ wki
∗

k∈𝒩(i) ≠ 0  where va , βa are parameters,p is a column vector. 

  S1 ≜ {w|w ≤ g(w)and wϵ𝒲}, 

 𝒜 ≜ {w ≥ 0} ∪ {w ≥ w0|w0ϵ int (S1)} ∪ {w ≥ w0|w0  ∈ S1 and w0=lim
t→∞

g(t)(0)} 

               ii.Damped GaBP, belief parameters (σi
2(t),μ

i
(t)) converge to the same point for all choices of va(0)∈ 𝒜 and β

a
(0)∈ ℝ|ε| 

under a nonzero damping factor d  if and only if  the three conditions hold: 

1) S1 ≠ ∅, 

                                                                                                             2) max
λ(G∗)

ℜ (λ(G∗)) < 1or min
λ(G∗)

ℜ(λ(G∗)  > 1 ; 

                                                                                                3)pii + ∑ wki
∗

k∈𝒩(i) ≠ 0 

              iii.AsynchronousGaBP,if S1 ≠ ∅, ρ(|G∗|) < 1 and pii +∑ wki
∗

k∈𝒩(i) ≠ 0,belief parameters(σi
2(t),μ

i
(t)) converge to the 

same point for all choices of va(0)∈ 𝒜andβ
a
(0) ∈ ℝ|ε| .Convergence condition for asynchronous GaBP is more stringent than that 

of synchronous GaBP.  

In[4], investigates the behaviour of the min-sum message passing scheme to solve Laplacian matrices of graphs and to 

compute systems of linear equations in the electric flow.  

 In [5],analyzes belief propagation in network with arbitrary topologies when the nodes in the graph describes jointly 

Gaussian random variables .Then giving an analytical formula relating the true posterior probabilities. Sufficient condition for 

convergence is given and shows that when belief propagation converges it gives correct posterior means for all graph 

topologies.The performance of belief propagation in general networks with multiple loops is carried out. The sum-product and 

max-product belief propagation algorithms are appealing, fast and easily parallelizable algorithms.  The results give a theoretical 

justification for applying belief propagation in certain networks with multiple loops. This may enable fast, approximate 

probabilistic inference in a range of new applications. In [6],the paper discusses about the theoretical framework for analyzing 

graph laplacians and operator.Analysis of graph laplacians including KNN graph.The framework reduces the problem of graph 

laplacian analysis to the calculation of a mean and varience for any graph construction method with positive weights and 

shrinking neighbourhood. It extends existing strong operator convergence results to non smooth kernels.  Graphical  models 

provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found 

applications in a variety of fields such as computer vision, image processing, and distributed sensor networks.  

In[7], a general class of algorithms for estimation in Gaussian graphical models with arbitrary structure is 

presented.These algorithms involve a sequence of inference problems on tractable sub graphs over subsets of variables. Analysis 

of algorithms based on the recently developed walk-sum interpretation of Gaussian inference. This leads to efficient methods for 

optimizing the next iteration step to achieve maximum reduction in error.Walk Summability approach is used for analyzing 

convergence rate. If every edge is updated infinitely often, then computed converges to the correct means in walk-summable 

models for any initial guess.Also shows that walk- summability is a sufficient condition for all algorithms to converge for a very 

large and flexible set of sequences of tractable subgraphs or subsets of variables on which to perform successive updates. For any 

non-walk-summable model,there exists at least one sequence of iterative steps that is ill-posed.  

The paper [8] presents a new framework based on walks in a graph for analysis and inference in Gaussian graphical 

models. The key idea is to decompose correlations between variables as a sum over all walks between those variables in the 

graph. The weight of each walk is given by a product of edgewise partial correlations and provided a walk-sum interpretation of 

Gaussian belief propagation in trees and of the approximate method of loopy belief propagation  in  graphs  with  cycles.  This  

perspective  leads  to  a  better  understanding  of Gaussian belief propagation and its convergence in loopy graphs.  

Let ϱ(A) denote the spectral radius of a symmetric matrix A, defined to be the maximum of the absolute values of the 

eigen values of A. The geometric series (I +A+A2+. . .) converges if and only if  ϱ(A) < 1. If it converges, it converges to 

(Ι − A)−1 . If ϱ(R) < 1, then we have a geometric series for the covariance matrix: . ∑ Rl∞
l=0  = (Ι − A)−1=J−1=P.Let R̅  = (|rij |) 
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denote the matrix of element-wise absolute values.The model is walk-summable if ϱ (R̅) < 1 . Walk-summability implies ϱ(R) < 1 

and J   0. 

In [9],investigates the expected rate convergence to consensus in an asymmetric network of weighted directed graph.The 

initial state of the network is represented by a random vector and the expectation is taken with respect to the random initial 

condition.In terms of  the eigen values 1of the Laplacian matrix of the network graph, the proposed convergence rate is 

described.The Laplacian matrix of the network is transformed to a new matrix .The convergence analysis of the centralized 

algorithm is performed within a prescribed upper bound on the approximation error of algorithm.A distributed version of the 

centralized algorithm is then developed using of consensus observer.  

 

III. METHODOLOGY  

  3.1 OVERVIEW 

Gaussian belief propagation algorithm (GaBP) is one of the most important distributed algorithms in signal processing and 

statistical learning involving Markov networks. It is well known that the algorithm correctly computes marginal density funct ions 

from a high dimensional  joint  density  function  over  a  Markov  network  in  a  finite  number  of iterations when the underlying 

Gaussian graph is acyclic. The Gaussian BP algorithm (GaBP), a special version of the BP algorithm for Markov networks with 

Gaussian distributions (also known as Gaussian graphical model), has received special attention for the study of its convergence 

properties. Rate of convergence is the measure of how fast the difference between the solution point and its estimates goes to 
zero.Analysis of convergence rate of GaBP for markov network/Bayesian network   includes following steps: 

 Consider a  markov/bayesian network. 

 Applying GaBP to the supposed network. 

 Finding convergence rate using walk summability approach. 

3.2 BLOCK DIAGRAM  
                Figure 3.1 shows the block diagram of the system .Consider a network of markov or bayesian .This is the first step 

involved in the analysis of convergence rate.Next step evolved of applying GaBP equations to the supposed network and 

converting it to a mathematical format.Then applying the conditions for the analysis of convergence rate to the supposed 

one.Different conditions can be used for the analysis of convergence, this paper includes about walk summability and laplacian 
operator.  

                       

 

 

                                                          Fig 3.1: Block diagram of the system 

 

      3.2.1 MARKOV NETWORK 

     A Markov  random  field, Markov  network or undirected graphical  model is  a  set of random variables having a Markov 

property described by an undirected graph. A random field is said to be a Markov random field if it satisfies Markov 

properties.Markov networks are undirected and may be cyclic. The underlying graph of a Markov random field may be finite or 

infinite.In the domain of artificial intelligence, a Markov random field is used to model various low-to mid-level tasks in image 

processing and computer vision.An example of a markov  network is shown in figure 3.2. Each edge represents dependency,here 
A depends on B and D.B  depends on A,B and E.E  on D and C.C depends on E.  

 

                                                  

                                         
    Fig 3.2.An example of a Markov random field. 

   

3.2.2 GAUSSIAN BELIEF PROPAGATION: 

Belief propagation, also known as sum-product message passing,is a message-passing algorithm for 

performing inference on graphical models,such as Bayesian networks and Markov random fields. It calculates the marginal 

distribution for each unobserved node (or variable), conditional on any observed nodes (or variables). Belief propagation is 

commonly used in artificial intelligence and information theory and has demonstrated empirical success in numerous applications 

including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability.  

Gaussian belief propagation is a variant of the belief propagation algorithm when the underlying distributions are Gaussian. The 
first work analyzing this special model was the seminal work of Weiss and Freeman. 

The GaBP algorithm solves the following marginalization problem: 

                                           p(xi)= 
1

z
∫ exp (−1 2xTAx + bTx⁄ )dxjj≠i

                                        (1) 

 Network 

n 

    GaBP    

 

Convergence rate analysis  
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where Z is a normalization constant, A is a symmetric positive definite matrix (inverse covariance matrix or precision matrix) 

and b is the shift vector. Convergence of the GaBP algorithm is easier to analyze and there are two known sufficient convergence 

conditions. The first one was when the information matrix A is diagonally dominant. The second convergence condition was 

when the spectral radius of the matrix ρ(I−|D−1 2⁄ AD−1 2⁄  |) < 1 ,where D = diag(A). The GaBP algorithm was linked to the linear 

algebra domain, and it was shown that the GaBP algorithm can be viewed as an iterative algorithm for solving the linear system 

of equations Ax = b where A is the information matrix and b is the shift Gaussian Belief Propagation Construction Steps: 

 Find all basic clusters and its intersection. 

 Then all intersections of the intersection 

 Organize all the regions into a region graph :a hierarchy of regions and their “direct”sub regions 

 Direct subgraph s of region r is R 

 To construct message connecting all regions r 

 Construct belief equations 

  

   3.2.3.  THE GRAPH LAPLACIAN 

Consider an undirected graph G=(V,E)with n≝ |V| and  m≝ |E|.Let G is unweighted.Two basic matrices associated with 

G,indexed by its vertices, are its adjacency matrix A and its degree matrix D .Let di denote the degree if vertex i. 

                                                    Ai,j ≝ {
1                            if ij ∈ E

0                          otherwise,
                                                        

And                                                                                                                                                     (2)                           

                                                       Di,j ≝ {
di                                         if i = j,
0                                   otherwise.

 

The graph laplacian of G is defined to be L D-A. 

For weighted a graph G=(V,E) with edge weights given by a weight function wG:E⟼ ℝ≥0
,define 

                                                       Ai,j ≝ {
 wG(ij)                      if ij ∈ E

0                             otherwise,
                   

And                                                                                                                                                    (3) 

                                                      Di,j ≝ {  
∑ wG(ij)l                                  if i = j,

0                                                 otherwise.
 

Now consider the case when ,in a system of equations Ax=b,A=L is the graph laplacian of an undirected graph and this system 

is not invertible unless b ∈Im(L).Hence we can solve the system of  equations Lx=b if  〈b, 1〉=0.Such a system is referred to as a 
Laplacian system of linear equations or  Laplacian system. 

 3.2.4 Laplace Operator 

                A linear differential operator,which associates to the function ∅(x1, x2, … . xn)  Of η  variables x1, x2, … . xn   the 

function 

                                 ∆∅ =
∂2∅

∂x1
2+

∂2∅

∂x2
2+…………….+

∂2∅

∂xn
2                                                                     (4) 

In particular,if ∅ = ∅(x, y)is a function of two variables,x,y,then laplace operator has the form  

                                           ∆∅ =
∂2∅

∂x2 +
∂2∅

∂y2                                                                                             (5)           

and if ∅ = ∅(x)  is a function of one  variables,then  laplacian of  ∅coincides with the second derivative, 

                                            ∆∅ =
∂2∅

∂x2                                                                                                     (6)          

   The equation ∆∅ = 0 is usually called the Laplace equation and hence the name Laplace operator. 

 

 

 

IV. IMPLEMENTATION AND RESULTS 

  This  paper  includes  analyzing  of  convergence  rate  of  Gaussian  Belief  Propagation  for markov network. The steps for 

convergence rate analysis using walk summability approach involves:recognition  of  a  markov model state diagram and 

transition matrix .Initialization of the matrix and providing convergence rate condition.   Theoretical study of rate of convergence 
of markov network using laplace operator is also included in this work. 

 

  

4.1 Theoretical approach of Convergence rate analysis-walk summability 

 

Walk-sum analysis is an elegant approach for studying the convergence of GaBP. Given a matrix R={rij}ϵ ℝn×n and its 

induced graph  𝒢 = (𝒱, ℰ) ,a walk w in the graph is a node sequence.w=(w0, w1, … . . wl),∀wi ∈  𝒱, (wi, wi+1)  ∈  ℇ  and its 
length is l . The weight of the walk is defined to be  

                                                    ∅(w) = ∏ rwiwi+1
l−1
i=0                                                                       (7)                           

   Walk  summability approach can be used for convergence rate analysis. Step involves : 

A. Unwrapped Tree Graph 

1) Find all leaves of the tree (start with the root); 

2) For each leaf, find all the nodes in the loopy graph that neighbour this leaf node, except its parent node in the tree, and add all 

these nodes as the children to this leaf node. 

The  variables  and  weights  for  each  node  in  the  unwrapped  tree  are  copied  from  the corresponding nodes in the loopy 

graph. It is clear that taking each node as root node will generate a different unwrapped tree. 
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For a graphical model,the message mi→j
(k)

 can be expressed as 

                                                       mi→j
(k)

α exp [−
1

2
ai→j(k)xj

2 + bi→j(k)xj]                                                                (8) 

  This results in GaBP , 

                                                 ai→j(k) = −
aijaji

ai→j(k)
,bi→j(k) −

ajibi→j(k)

ai→j(k)
                                                                 (9) 

 with  

                                                    ai→j(k) = aii + ∑ av→i(k − 1)υϵNi\j
                                                                  (10) 

                                                     bi→j(k) = bi + ∑ bv→i(k − 1)υϵNi\j
                                                                    (11) 

The initialization is done by taking ai→j (0)= aii  and  bi→j(0) = bi .The marginal mean  is given by,                                                      

                                                                   μi(k)= 
bi+∑ bv→i(k−1)υϵNi\j

aii+∑ av→i(k−1)υϵNi\j

                                                                            (12) 

Let A be an information matrix and it is invertible, then μ = A−1b.Using walk summability condition,  

                                                    μi(k) = ∑ ∑ ϕ(w)bjw:j→i|𝒢i
(k)

n
j=1                                                                         (13) 

where w: j → i|𝒢i
(k)

  denotes a walk from j to i inside the unwrapped graph  𝒢i
(k)

. 

                                                          μi = ∑ ∑ ∑ ϕ(w)bj
w=j

l
→i

∞
l=0

n
j=1                                                                          (14) 

 Combining (8) and (9),we get  

                                          μi(k) − μi = ∑ ∑ (∑ ϕ(w)bj −
w:j→i|𝒢i

(k) ∑ ϕ(w)bj
w=j

l
→i

)∞
l=0

n
j=1                                       (15) 

                    

                                                   μi(k) − μi = ∑ ∑ ∑ ϕ(w)bj
w=j

l
→i|W̃

i
(k)

∞
l=0

n
j=1                                                       (16) 

                                                    

                                                  μi(k) − μi = ∑ ∑ ∑ ϕ(w)bj
w=j

l
→i|W̃i

(k)
∞
l=k+1

n
j=1                                                     (17) 

  The absolute value of above equation shows that it converges to a constant value.    

 

 

4.2.Practical approach of Convergence rate analysis-walk summability 

         

The simulation result shows that as the iteration number increases ,error decreases exponentially.And also shown that the  

gaussian mean and theoretical mean are same. The output of  walk summability approach is shown in figure 4.1.It is clear from 

that ,Gaussian mean  is equal to theoretical mean ,x=𝐴−𝑏. 

                                                 

              Fig 4.1 Output of walk summability –gaussian mean equal to theoretical mean  

The figure below shows that as the iteration number increases ,convergence will be exponentially decreases.The graph is 

plotted between iteration number in the x- axis and log error in the y- axis.Different convergence plot for three different iterations 

is shown in figure below.Figure 4.2,4.3,4.4 shows the convergence plot  for the iterations K=3,50 and 1000. 
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Fig 4.2convergence rate plot for iteration K=3                                             Fig 4.3 convergence plot for K=50                

 

         Fig 4.4 convergence plot for K =1000 

          

4.2  Convergence rate analysis-Laplace operator 

First a state diagram  of a markov network is considered and its transition matrix is  obtained.Adjacency  matrix  is  calculated  

and  initializing  the  matrix  .Using  adjacency matrix and degree matrix,laplacian matrix is calculated.Eigen values of the matrix 

are calculated and plotted. 

As a review from  certain work,it is noticed that eigen value of a laplacian matrix can be used for analysis of convergence rate .A 

steady state is an eigen vector  of the Markov transition matrix corresponding to the eigen value1.For a markov chain which does 

converge to a unique steady state ,the speed of convergence is given by the size of the second eigen value :if this is one,the 

process has multiple steady state .If it   is near one, convergence occurs very slowly .Also it may occur exponentially.  

The figures below shows the adjacency and  laplacian matrices ,from which convergence can be detected.And figure 4.6 shows 

the eigen value of the matrix. 

                      
 

 

Fig 4.5  Adjacency matrix and laplacian matrix                               Fig 4.6   Eigen value    
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V. CONCLUSION AND FUTURE WORKS 

  In this paper ,it is analysed that the convergence property of GaBP for markov network and provided a simple bound on the 

convergence rate.It is analysed that as the iteration number increases,the error decreases exponentially using the walk 

summability approach.Laplacian matrix and its eigen values are plotted for determining the rate of convergence using laplacian 

operator. Theoretical study says that eigen value of a laplacian matrix can be used for determining the convergence speed.Future 

work of this project work includes the practical explanation for the rate of convergence of a markov network using laplacian 

operator .And it is also possible to extend the work using a comparative study of convergence rate analysis using walk 

summability and laplacian operator. 
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